Квантовые компьютеры новости

Квантовые компьютеры в разы превосходят обычные. IBM, Microsoft и Google уже внедряют их для решения узких задач в лабораториях и даже разрабатывают машины для коммерческого. На сегодня это самый мощный квантовый компьютер в стране. Скорее всего, будут нужны разные квантовые компьютеры для разных задач. Сегодня квантовый компьютер представляет собой лабораторию, нагромождение приборов. Atom Computing получил квантовый компьютер на 1180 кубитов, IDC: Классические компьютеры иссякнут в следующем десятилетии, Google сообщила о создании самого. «Создание нового класса устройств, основанных на квантовых эффектах, которые позволяют достигать нового качества целевых функций. Например, квантовые компьютеры позволят.

Когда квантовые вычисления станут реальностью?

Ученые обнаружили, что эти случайные сбои в работе квантовых компьютеров можно подавить, если использовать для расчетов так называемые логические кубиты, виртуальные квантовые ячейки памяти, состоящие из нескольких соединенных друг с другом физических кубитов. Они устроены таким образом, что ошибки в их работе автоматически корректируются, что позволяет вести сложные и длительные вычисления при их помощи. В 2023 году сразу несколько научных коллективов разработали квантовые процессоры на базе большого числа логических кубитов. Опыты с этими вычислительными машинами впервые на практике продемонстрировали то, что использование логических кубитов действительно позволяет уменьшать частоту появления ошибок при длительной работе компьютера.

Один из самых масштабных проектов такого рода, квантовый компьютер на базе 48 логических кубитов, был создан в США группой Михаила Лукина, профессора Гарвардского университета.

Заместитель руководителя группы «Прецизионные квантовые измерения» РКЦ Илья Семериков, который разрабатывает этот КК, рассказывает: «Нам еще только предстоит измерить экспериментально квантовый объем нашего ионного компьютера, но, судя по достоверностям двухкубитных операций и связности, я бы ожидал увидеть 25 или, может быть, 26. Увеличение квантового объема — наша основная задача на сегодня». Такие результаты соответствуют уровню лидеров квантовой гонки начала-середины 2020 г. Текущий рекорд по квантовому объему по состоянию на июль 2023 г. Он составляет 219, или 524 288.

Это означает, что компьютер может выполнять сложные квантовые алгоритмы с высокой точностью. РКЦ в конце 2021 г. К недостаткам модели относилось меньшее время когерентности, но на сегодня эта проблема решена, сказал Семериков. Текущая точность квантового компьютера РКЦ находится на уровне ведущих компаний 2018-2019 гг. По словам Семерикова, сейчас команда активно работает над ее повышением. МФТИ создал рабочий квантовый чип, выполненный на сверхпроводниках, на 8 кубитах.

Сейчас тестируется на 12 кубитах. Оборудование для этого было закуплено еще в 2016 г. Но сохраняются сложности с масштабированием и улучшением этого типа КК. Разработчики российских КК сходятся во мнении, что для ускорения разработки квантового компьютера, кроме отдельных проблем, необходимо решать вопрос с кадрами и популяризировать квантовые технологии среди молодежи и в научной среде. Помимо государственного и частного финансирования лабораторий, создающих квантовые компьютеры, уже сейчас нужно готовить компетентные кадры и учебные материалы для разработки квантового «железа» и ПО, рассказал Якимов. Помимо этого существует проблема с закупкой оборудования.

Сколько это займет времени в России, зависит от скорости закупки оборудования и от того, насколько мы будем успешны в попытках построить масштабируемый квантовый компьютер», — сказал Семериков. Для ускорения закупок нужно минимизировать соответствующие бюрократические процедуры, добавил он. Также российским ученым не хватает элементной базы электронных компонентов, лазеров, литографов для квантовых микропроцессоров, средств измерения, охлаждения и т. Возможное решение этой проблемы Федоров видит в международном сотрудничестве с восточноазиатскими странами.

Но чтобы такие задачи решать, нам нужно не два кубита кубит — наименьшая единица информации в квантовом компьютере, по аналогии с битом.

Квантовые компьютеры во всем мире сегодня работают по факту с единицами. Для того чтобы от десятков кубит перейти к тысячам, нужны новые физические решения, фундаментальная наука, исследования. При этом важно не только число кубит, но и их качество, так как все операции над кубитами должны быть очень точными, чтобы получать правильные результаты. Когда нам ждать умных роботов? Но чтобы они были полезными, нужно не десять кубит, а хотя бы сто.

Здесь требования пониже, чем к разложению чисел на множители, но все равно это очень много. Я не сторонник идеи, что результаты будут скоро. Завтра ничего не произойдет, если, конечно, кто-то из-под полы не достанет прорывную идею. Я так пессимистичен потому, что стою ежедневно за этими ручками, собираю болтики и винтики и понимаю всю сложность, кропотливость экспериментов в области квантовых вычислений. По оптимистической оценке, чтобы сделать что-то действительно полезное для прикладных задач, надо еще десять лет.

Один шаг в экспериментах по квантовому компьютингу, если все делать быстро без ограничений финансов и сотрудников, занимает от трех до пяти лет. Кроме того, нужны новые идеи. И предсказать скорость генерации новых идей не может никто. Это момент творчества. Чем больше людей занимается одной идеей, тем больше вероятность, что кто-то догадается, как и что нужно сделать.

Да, у нас есть свои идеи для исследований. Но от трех до пяти лет обычно проходит от идеи до ее реализации. В ведущих лабораториях мира это происходит быстрее — у них попроще с оборудованием и кадрами, но тем не менее это не шаги в масштабах недели. Эти страны ввели санкции. Я с большим скептицизмом отношусь к идее импортозамещения в области высоких технологий.

К примеру, нам нужны точные лазеры для квантового компьютера. Заказать теперь не сможем. Где их взять? Да, мы можем заняться разработками этих лазеров, но кто тогда будет заниматься квантовым компьютером? Количество кадров в любой отрасли ограничено.

Для того чтобы воспитать нового сотрудника в таких наукоемких областях, потребуется от трех до пяти лет. И это сильно осложняет жизнь. Да, еще до последних массированных санкций мы закупили новый комплект оборудования, с которым можем свои идеи доделать. Но этих резервов нам хватит на год—два. Невозможно построить суверенную науку.

Для примера, над обычным смартфоном трудятся люди из десятков стран. В Конго добывают кобальт, который едет в Китай. Там его чистят, потом этот кобальт используется в литиевых батареях, которые стоят в телефоне. Все страны вплетены в большую международную кооперацию. Ни одна страна не может все делать сама.

Фото: Pexels — Для чего нужен адронный коллайдер? Так, существует обратная зависимость энергии и масштабов расстояния: чем с большей энергией летит частица, тем в более маленькие кусочки материи можно заглянуть.

Но решить какую-то задачу гораздо быстрее обычного компьютера, то есть «продемонстрировать квантовое превосходство», такой процессор пока не может — слишком нестабильны элементы. Подобные удачи, впрочем, уже случались. Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях.

Его установят в клинике города Кливленд в США. Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера. Но есть и опасения по поводу новой технологии. Наталья Малеева, старший научный сотрудник криолаборатории электронных систем НИТУ МИСиС: «Квантовый компьютер — это разложение больших чисел на простые множители, это несортированный поиск. Обе эти задачи часто вспоминаются в приложении к современной криптографии. Недавно китайские ученые заявили, что им хватило десяти кубитов для взлома 48-битного алгоритма шифрования.

Подобный метод, хотя и посложнее, применяют в защите наших банковских счетов».

Квантовые технологии в России 2023

Помимо производства воспроизводимых и развертываемых квантовых компьютеров, здесь разместятся научно-исследовательские и инженерные подразделения. «Росатом» объявил о разработке собственного квантового компьютера. Госкорпорация планирует до 2024 года потратить на проект более 20 миллиардов рублей. Мы поговорили про защиту информации, но всё-таки квантовый компьютер – это не только атака, это действительно алгоритмы, которые должны применяться в промышленности, в городе. Швейцарская Terra Quantum разрабатывает гибридные квантовые приложения для науки о жизни, энергетики и финансов, которые будут работать на CUDA Quantum. перспективный тренд, так как компьютеры подобного типа могут проводить миллионы операций в секунду и быть востребованы в самых разных областях.

Первые в мире: ученые МФТИ добились прорыва в области квантовых компьютеров

Компания Horizon Quantum Computing разрабатывает преобразователь классических программ для выполнения на квантовых компьютерах. В конце 2022 года IBM установила рекорд, создав крупнейший квантовый процессор в мире мощность в 433 кубита — основной единицы квантовой обработки информации. квантовый компьютер на базе 48 кубитов, разработанный профессором Михаилом Лукиным из Гарвардского университета.

Зачем России квантовый компьютер за 20 миллиардов

Так вот фотоны и электроны именно так себя и ведут. Не верите? Пожалуйста: Что это такое? Это электрон. Вот он вылетает из пушки, и полюбуйтесь: одновременно проходит сквозь оба промежутка между листками бумаги. То есть он летит как электромагнитная волна и, лишь наткнувшись на препятствие, предстаёт перед нами в качестве частицы. С фотонами то же самое: интересно, в школьных учебниках физики сохранилось упоминание о том, что свет — это и волны, и частицы?

Только, к сожалению, природные кубиты для квантовых компьютеров не очень подходят, потому что от них требуются сразу два несравненных качества — способность хранить информацию и при этом взаимодействовать друг с другом. А это редкое совпадение. Например, фотоны — прекрасный носитель данных, но друг с другом они не общаются. А общаться надо особым, непостижимым образом. Скажем, одна частица находится в России, а другая — в Малайзии. Первая находится в таком состоянии, а вторая — в эдаком.

Так вот, если с первой что-нибудь сделается, то вторая тоже немедленно изменит состояние. И неважно, в Малайзии она или на другом конце галактики. Это и есть квантовая запутанность. Тут весь секрет в том, чтобы управлять поведением этих кубитов. Для этого придумали специальные штуки — квантовые вентили. Частица входит в них в одном виде, а выходит уже в другом.

Модель умела решать довольно сложные задачи по алгоритму Дойча — Йожи. Дальше свои версии ЯМР-компьютеров стали по цепочке появляться во многих мировых институтах и лабораториях — к сожалению, их фотографии отыскать в Сети довольно сложно — учёные неохотно публикуют изображения своих детищ, вероятно, из соображений секретности. Зато ими охотно делились корпорации в своих пресс-релизах. Вот, например, фото первого в мире 16-кубитного процессора от компании D-Wave, одного из ведущих вендоров в этой отрасли. Первый 16-кубитный процессор от D-Wave Systems Фото: IXBT Конечно, такая мощность далеко не предел — например, та же D-Wave Systems в 2022 году объявила , что собирается разработать квантовый компьютер аж на 7000 кубит.

Но пока это остаётся на уровне фантазий — а самый мощный на сегодняшний день квантовый компьютер работает на 1225 кубитах и принадлежит американскому стартапу Atom Computing. А что сейчас? Квантовые компьютеры уже вышли из области теоретических моделей, построены и давно работают. На момент написания статьи такие машины есть у многих компаний и научно-исследовательских институтов. Какие задачи могут решать квантовые компьютеры Сразу скажем: квантовые компьютеры пока ещё слишком сырые, чтобы массово решать конкретные прикладные задачи.

Всё, о чём пойдёт речь дальше, относится либо к отдельным кейсам, либо к отдалённым прогнозам. Разработка новых лекарств и материалов. Квантовый компьютер может создать новое химическое соединение и просчитать его взаимодействие с уже существующими структурами. Классические, даже сверхмощные, компьютеры неспособны быстро справиться с такой задачей. Подсчитано , что моделирование молекулы из 70 атомов займёт у классического компьютера около 13 миллиардов лет, тогда как у квантовых вычислителей на этой уйдёт всего пара минут.

На практике такое моделирование востребовано в генной инженерии, при разработке и создании новых лекарств и материалов. Оптимизация процессов в логистике и энергетике. Построение оптимальных маршрутов, распределение подачи тепла и света, прогнозирование спроса и другие сложные комбинаторные задачи — вполне в компетенциях квантовых компьютеров. Здесь наш герой выступает одновременно и панацеей, и угрозой. С одной стороны, на основе квантовых ключей можно создавать совершенные средства защиты, которые человеку взломать просто не под силу.

С другой — квантовый компьютер способен за несколько секунд подобрать ключи почти к любому классическому алгоритму — например, к тому же RSA-2048. Поэтому разработка новых квантовых протоколов видится уже не как символ прогресса, а скорее как насущная необходимость. Если хотите лучше разобраться в нюансах квантовой криптографии, почитайте книгу « Апокалипсис криптографии » Роджера Граймса.

Так, в планах QuEra к 2025 году выпустить компьютер, у которого 3000 физических и 30 логических кубитов, а к 2026-му - показать устройство, у которого 10 000 физических и 100 логических кубитов. Больше новостей из мира IT и технологий в нашем Телеграмм канале.

Так, в планах QuEra к 2025 году выпустить компьютер, у которого 3000 физических и 30 логических кубитов, а к 2026-му - показать устройство, у которого 10 000 физических и 100 логических кубитов. Больше новостей из мира IT и технологий в нашем Телеграмм канале.

В МФТИ назвали главный прорыв года в квантовой физике

Ученые НИТУ МИСИС совместно с коллегами из МФТИ впервые в России смогли реализовать четырехкубитный квантовый процессор и продемонстрировать на нем точности двухкубитных. Использование квантовой механики для передачи и обработки данных позволяет в сотни раз ускорить вычисления, так как квантовый компьютер оперирует не битами, а кубитами. Rigetti — компания, занимающаяся интегрированными т квантовые компьютеры и сверхпроводящие квантовые процессоры, на которых они работают. На проходившем в июле Форуме будущих технологий глава «Росатома» Алексей Лихачев продемонстрировал президенту Владимиру Путину 16‑кубитный квантовый компьютер на.

Долгожданный прорыв: квантовые вычисления стали более надежными

И квант — это одна из элементарных частиц", — пояснил кандидат технических наук, доцент Московского технического университета связи и информатики Олег Колесников. И все это обеспечивает невероятную скорость работы суперкомпьютера. А квинтиллион — это цифра с 18 нулями. Сравнивать скорость работы Frontier со скоростью работы вашего ноутбука, это как сравнивать скорость улитки и сверхзвукового истребителя", — отметил профессор машиностроения и физики Массачусетского технологического института Сет Ллойд. А все потому, что в основе японского чуда — не обычные процессоры, а квантовые. Ведь большинство квантовых компьютеров могут работать только при температурах, близких к абсолютному нулю, когда все замедляется и "шум" окружающей среды минимален", — рассказал руководитель группы экспериментальных квантовых вычислений компании — производителя квантовых компьютеров Джери Чоу. Но дело не только в размерах.

В классических ЭВМ информация зашифрована в битах, то есть в нулях и единицах, а в квантовых — в кубитах. Один кубит — это атом или фотон — мельчайшая частица вещества или энергии. Причем она одновременно может быть как нулем, так и единицей. Как говорят ученые, такая запутанность позволяет квантовым компьютерам, что называется, "думать" в миллиарды раз быстрее. Они позволяют получить не только количественные результаты за счет ускорения процессов, но и качественные, обеспечивая лучшую адаптацию в средах и ситуациях. Это означает, что квантовые роботы более креативны", — говорит директор кафедры квантовой динамики Института квантовой оптики Общества Макса Планка Герхард Ремпе.

Однако многие видят в них угрозу, ведь они будут в состоянии не только делать за человека механическую работу, но и легко заменят представителей творческих специальностей.

Также в 2021 году команда запатентовала архитектуру созданного квантового процессора, а на следующий год увеличила его мощность до 5 кубит. Валиева РАН на протяжении всего проекта разрабатывался стек программного обеспечения для работы с ионным квантовым вычислителем, учитывающий особенности его физической реализации. В конце марта 2023 года группе экспертов Фонда НТИ был продемонстрирован облачный интерфейс для взаимодействия с созданным процессором, выполнен запуск квантовых алгоритмов. В ходе демонстрации физики удаленно запустили на процессоре алгоритм Гровера, используемый для поиска значения по неупорядоченной базе данных, а также алгоритм Бернштейна-Вазирани, применяемый в решении задачи по нахождению n-битного числа.

Система мощностью 100 тыс. Квантовые вычисления хранят и обрабатывают информацию, используя уникальные свойства фундаментальных частиц: они способны существовать в нескольких энергетических состояниях одновременно.

Это явление известно как суперпозиция. Благодаря свойствам суперпозиции информацию можно кодировать и манипулировать ею новыми способами, сделав возможным решение ряда вычислительных задач, невыполнимых классическими методами. Пока квантовые компьютеры не могут делать ничего сверх того, на что способны обычные суперкомпьютеры.

Моя цель поймать 100 ионов к 2024 году и достичь высоких точностей одно- и двух- кубитных операций. Я планирую использовать современные наработки в этой области, а также, свои новые идеи. Я мечтаю создать лучшую лабораторию в мире по квантовой оптике. Хочу создать квантовый компьютер, который сможет достичь квантового превосходства над классическим, и сделать так, чтобы квантовый компьютер на холодных ионах мог решать прикладные задачи.

Я хочу внести существенный вклад в развитие своей области и принести пользу миру с помощью науки.

Квантовые компьютеры и все, что с ними связано

Здесь будут обучать экспертов в области естественных наук написанию квантовых программ, которые помогут в диагностике заболеваний и создании новых лекарств. Classiq создал ПО для проектирования, которое автоматизирует низкоуровневые задачи, позволяя разработчикам не вникать в детали функционирования квантового компьютера. Швейцарская Terra Quantum разрабатывает гибридные квантовые приложения для науки о жизни, энергетики и финансов, которые будут работать на CUDA Quantum.

Логические кубиты дублируют вычислительные процессы, поэтому если один из них откажет, другие смогут продолжить вычисления. В 2026 году QuEra планирует запустить машину с более чем 10 000 физическими и 100 логических кубитами, вычислительная мощность которой должна превзойти любые современные суперкомпьютеры.

Здесь мы рассказываем, зачем нужны квантовые компьютеры:.

Некоторые компании, например IBM и Google, также работают над развитием квантовых компьютеров и соревнуются с D-Wave в этой области. Каждая из этих компаний имеет свой уникальный подход к разработке квантовых систем и сфокусирована на различных аспектах квантовых вычислений. В конечном итоге, невозможно однозначно определить, какая из компаний предоставляет самую мощную или лучшую квантовую платформу. Это сложное и быстро развивающееся поле, в котором каждая компания стремится сделать значимый вклад. Однако объявление D-Wave о разработке и калибровке нового квантового компьютера Advantage 2 с более чем 1200 кубитами является значимым достижением в области квантовых вычислений.

Увеличение времени когерентности кубитов и сокращение ошибок в вычислениях открывают новые возможности для решения сложных задач и расширения квантовых вычислений. Доступность компьютера через облачный сервис также делает его доступным для широкого круга пользователей и исследователей.

Существенно большие реальные перспективы видны в разработках алгоритмов в области исследований молекулярных и атомных структур вещества. В первую очередь это вычисления молекулярных гамильтонианов и их использования в квантовых алгоритмах для поиска информации об электронной структуре молекул и их взаимодействия с другими молекулами. С помощью таких алгоритмов решены практические задачи синтеза материалов с заданными свойствами, лекарств, связывающих определенные молекулы в живом организме.

Есть еще одна область, где квантовые алгоритмы уже дают заметные преимущества — это задачи из финансовой области, например, оптимизация и диверсификация портфеля, ценообразование опционов, «бычьи» и «барьерные спреды», варианты ценовой корзины, ценообразование активов с фиксированным доходом, анализ кредитного риска. Здесь в основе лежит решение задачи оптимизации с помощью квантового приближенного алгоритма оптимизации и вариационного алгоритма оптимизации. Также оказалась востребованной целая группа квантовых алгоритмов оптимизации широкого применения, таких, как поисковый алгоритм Гровера , квадратичного программирования, проблем коммивояжера, маршрутизации транспорта и других. Сейчас много крупных компаний проявляет интерес к использованию квантовых компьютеров в своих бизнес-процессах. Для этого они заключают контракты с ведущими производителями квантовых компьютеров и инвестируют в стартапы, ориентированные на их разработку на новой физической среде и предоставлении облачных сервисов квантовых вычислений.

Стоимость современного квантового компьютера запредельно велика. Она не по карману не только рядовым компаниям, но даже очень крупным. Естественной бизнес-моделью использования квантового компьютера является облачная модель. Ряд разработчиков и владельцев квантовых компьютеров предоставляют услугу и интерфейс прикладного программирования для удаленного использования реальных кубитов любому заинтересованному. Причем такой бэкэнд предоставляется бесплатно, без ограничений квантовых вычислений.

Так что вы можете поработать сегодня на реальном квантовом компьютере, если умеете работать с Python и имеете постоянное интернет-соединение. Конечно, очереди за бесплатным сервисом затрудняют работу с такими задачами, как квантовое машинное обучение, но почувствовать реальность квантовых вычислений довольно просто. Если говорить про будущие внедрения квантовых компьютеров, то Джем Дильмегани, основатель аналитической компании AIMultiple , рассматривает следующие рынки как перспективные. Автомобильный рынок Например, для оптимизации больших автономных парков. Так, Volkswagen сотрудничает с Google, чтобы использовать квантовые вычисления для разработки своих автономных транспортных средств.

Энергетика Управление электроэнергетики и водоснабжения Дубая DEWA работает с Microsoft с 2020 года над использованием квантовых вычислений для оптимизации энергопотребления. Рынок погодных прогнозов IBM использует квантовые вычисления для точного прогнозирования погоды, в настоящее время обслуживая почти всех поставщиков потребительских технологий, например, Apple, Amazon, Google и Facebook. Финансовый рынок Автоматическая торговля например, прогнозирование финансовых рынков. Для анализа рисков. В 2020 году Caixa Bank запустил пилотную программу по использованию квантовых вычислений для моделей классификации рисков.

Оптимизация портфеля. В 2021 году KPMG провела пилотный бенчмаркинг управления портфелем и обнаружила, что квантовые вычисления работают лучше, чем любые другие методы бенчмаркинга для краткосрочных инвестиций. Обнаружение мошенничества. В 2022 году PayPal заключила партнерское соглашение с IBM, чтобы использовать квантовые вычисления для обнаружения мошенничества. Рынок страховых услуг Оценка инструментов, страховые взносы в сложных случаях.

Компания медицинского страхования Anthem планирует использовать решение IBM для квантовых вычислений для задач, требующих большого объема данных, например, для выявления аномалий здоровья. Логистика Оптимизация маршрутов и трафика: компания DWave, занимающаяся контролем качества, в партнерстве с Toyota провела исследование, которое доказало, что использование контроля качества для прогнозирования и оптимизации трафика работает лучше, чем существующие решения. Оптимизация цепочки поставок и запасов: приложение контроля качества еще не является признанным решением в оптимизации цепочки поставок, но крупные компании например, Coca Cola Japan , запустили крупномасштабные пилотные проекты. Производство Оптимизация конструкции например, аккумуляторы, чипы, транспортные средства и т. Фармацевтический рынок Предсказание взаимодействия лекарств.

Биотехнологическая компания из Массачусетса заключила партнерское соглашение с 1QBit, чтобы использовать квантовые вычисления для молекулярного сравнения при разработке лекарств. Персонализированная медицина с учетом геномики. Cambridge Quantum, исследовательский партнер Roche и Crownbio, разрабатывает технику квантовых вычислений для анализа генетических данных для лечения рака.

Похожие новости:

Оцените статью
Добавить комментарий