Какова может быть цель выступления на тему солнечная энергия будущее земли

Концентрирование солнечного света связано с тем, что вам не надо закладывать большие площади. Вы с больших площадей собираете свет, например, зеркалами или линзами, и при этом на солнечный элемент у вас падает 100 солнц, 500 солнц, 1000 солнц. Солнечная энергия — энергия будущего. Это самый дешевый возобновляемый источник энергии, который, по некоторым прогнозам, в течение следующих 20 лет перегонит по объемам угольную и газовую энергетику в большинстве стран. Концентрирование солнечного света связано с тем, что вам не надо закладывать большие площади. Вы с больших площадей собираете свет, например, зеркалами или линзами, и при этом на солнечный элемент у вас падает 100 солнц, 500 солнц, 1000 солнц.

Солнечная активность и ее влияние на Землю. Примеры. Научное творчество

Иван, помощь с обучением 1 день назад Анна Михайловна, здравствуйте! Нужен отчёт о прохождении практики, специальность Государственное и муниципальное управление. Планирую пройти практику в школе там, где работаю. Иван, помощь с обучением 1 день назад Сергей, здравствуйте! Учусь на 2 курсе по специальности земельно-имущественные отношения. Нужен отчет по учебной практике. Подскажите, пожалуйста, стоимость и сроки выполнения? Иван, помощь с обучением 1 день назад Инна, здравствуйте!

Сможете помочь? И сколько это будет стоить? Колледж КЭСИ, первый курс. Иван, помощь с обучением 2 дня назад Здравствуйте!

Люди надеются, что в скором времени это приобретет большого использования и станет доступно многим людям, ведь это не только экономит затраты на отопление и электроэнергию, это еще и не приносит вред нашему здоровью. Использование энергия солнца на земле Человеку во все времена было свойственно изображать окружающий его мир, свои эмоции и переживания на любых доступных материалах. Сначала, на заре времен, это были стены пещеры, либо гладкий склон скалы, а потом, В этом году исполняется 193 года со дня рождения одного из самых любимых мальчишками романистов, предсказавших в своих фантастических произведениях за долгое их появление таких Крылов Иван Андреевич родился в 1769 году в семье бедного армейского офицера. Отец будущего баснописца участвовал в подавлении крестьянского восстания под руководством Емельяна Пугачёва. Солнце — светящийся газовый шар крупных размеров с постоянным излучением энергии. Благодаря Солнцу на Земле процветает жизнь. За счет Солнца происходит циркуляция воздуха и воды на планете, оно регулирует воздушную и водную среду. Солнечная энергия является экологически чистым ресурсом. Солнечная энергия очень доступна и имеет высокий потенциал в использовании. Энергия рассеивается по земле, поэтому для качественного использования нужно сначала собирать её. Весь мир начал искать способы преобразования солнечной энергии, так как круглый год она поступает на планету в огромных количествах. Применение солнечной энергии Основной сферой использования солнечной энергии является системы солнечных батарей. Батареи устанавливают на крышах зданий, в которых энергию используют для отопления и освещения, а также для всевозможных приборов, которые работают от электричества. Энергию солнца батареи или коллекторы накапливают, затем преобразовывают в электричество, которое помогает обслужить электрические приборы. Еще в 1996 году архитекторы разрабатывали проекты зданий с солнечными батареями. Коллекторы устанавливали на крышах домов или на солнечных площадках земли. Интересные факты Лучи Солнца добираются до Земли всего лишь за 8 минут. В последние года очень популярно устанавливают солнечные батареи, лидерами являются такие страны, как Япония, Германия, Испания. К 2020 году Китайские ученые планируют установить в космосе солнечную электростанцию. Солнечные батареи накапливают энергию и при пасмурной погоде. Существует Ассоциация Солнечной Энергетики, которую создали в Америке в 1955 году, которая и стала началом разработок батарей. Солнце — мощный источник энергии, который в будущем может стать основным источником на поверхности Земли. Для использования солнечной энергии нужно минимум затрат, так как единственными затратами является установка оборудования. Вариант 2 Солнечная энергия на Земле используется в разных видах. На самом Солнце протекают достаточно трудные процессы, которые позволяют выделять энергию, необходимую для жизни на всей планете. Благодаря этому может нагреваться атмосфера, в которой образовываются ветра, а также течения морские и океанические течения. Солнечная энергия способствует смене времен года, которых бы не было отсутствуй Солнце или если бы сама энергия не выделялась в таких количествах. Также солнце играет ведущую роль в круговороте воды на Земле, а также в появлении природных ископаемых. Таким образом, правильно работает отопление планеты в целом. Без энергии солнца вода не смогла бы испаряться, она бы застаивалась на планете, а процессы работали бы неправильно. При попадании на листья растения начинается фотосинтез, который позволяет растениям правильно расти и развиваться. Именно зеленый цвет растений говорит о том, что процессы фотосинтеза протекают регулярно. Они помогают растениям вырабатывать необходимый для дыхания кислород. Энергия Солнца позволяет человеку вырабатывать энергию и электричество. Для этого устанавливаются солнечные панели, которые позволяют поглощать энергию солнца, сохранять ее и перерабатывать. Так, например, власти Турции разрабатывают специальные программы для установки солнечных панелей среди простого населения. Данный источник энергии является восстанавливаемым и природным, поэтому его побуждают использовать. В будущем ученые призывают полностью перейти на природные источники энергии, так как они являются возобновляемыми. И при этом не вредят окружающей среде. Они быстро перерабатываются и способны возобновляться.

Благодаря этому снижается потребление энергии на последующий ее нагрев. Такой коллектор — недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей насосов , требующая минимального техобслуживания, с нулевыми эксплуатационными расходами. Плоские коллекторы Плоские коллекторы — самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера поглотителя. Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа оно пропускает значительную часть поступающего на коллектор солнечного света. Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери [3]. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Больше получить невозможно, разве что с помощью сезонного регулирования. Нагрев воды с помощью энергии Солнца — очень практичный и экономный способ. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива. Термосифонные солнечные системы Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией конвекцией теплоносителя, которые используются в условиях теплой зимы при отсутствии морозов. В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Термосифонная система делится на три основные части: - плоский коллектор абсорбер ; - трубопроводы; - Бак-накопитель для горячей воды бойлер. Когда вода в коллекторе обычно в плоском нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы [4]. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно.

Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии. АЭС работала в 1973—1999 годах. В настоящий момент атомная энергия в Казахстане не используется, несмотря на то, что запасы по данным МАГАТЭ урана в стране оценены в 900 тысяч тонн. В 2018 году ожидается строительство в Казахстане 2 АЭС 1. Курчатов — город в Восточно-Казахстанской области; 2.

Использование солнечной энергии на Земле. Перспективы использования энергии Солнца на Земле

В условиях домашнего хозяйства предварительно подогретая вода поступает в бак-накопитель. Благодаря этому снижается потребление энергии на последующий ее нагрев. Такой коллектор - недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей насосов , требующая минимального техобслуживания, с нулевыми эксплуатационными расходами. Плоские коллекторы Плоские коллекторы - самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера поглотителя. Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа оно пропускает значительную часть поступающего на коллектор солнечного света. Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери. Плоские коллекторы делятся на жидкостные и воздушные. Оба вида коллекторов бывают остекленными или неостекленными.

Солнечные трубчатые вакуумированные коллекторы Традиционные простые плоские солнечные коллекторы были спроектированы для применения в регионах с теплым солнечным климатом. Они резко теряют в эффективности в неблагоприятные дни - в холодную, облачную и ветреную погоду. Более того, вызванные погодными условиями конденсация и влажность приводят к преждевременному износу внутренних материалов, а это, в свою очередь, - к ухудшению эксплуатационных качеств системы и ее поломкам. Эти недостатки устраняются путем использования вакуумированных коллекторов. Вакуумированные коллекторы нагревают воду для бытового применения там, где нужна вода более высокой температуры. Солнечная радиация проходит сквозь наружную стеклянную трубку, попадает на трубку-поглотитель и превращается в тепло. Оно передается жидкости, протекающей по трубке. Коллектор состоит из нескольких рядов параллельных стеклянных трубок, к каждой из которых прикреплен трубчатый поглотитель вместо пластины-поглотителя в плоских коллекторах с селективным покрытием. Нагретая жидкость циркулирует через теплообменник и отдает тепло воде, содержащейся в баке-накопителе. Вакуум в стеклянной трубке - лучшая из возможных теплоизоляций для коллектора - снижает потери тепла и защищает поглотитель и теплоотводящую трубку от неблагоприятных внешних воздействий.

Результат - отличные рабочие характеристики, превосходящие любой другой вид солнечного коллектора. Фокусирующие коллекторы Фокусирующие коллекторы концентраторы используют зеркальные поверхности для концентрации солнечной энергии на поглотителе, который также называется «теплоприемник». Достигаемая ими температура значительно выше, чем на плоских коллекторах, однако они могут концентрировать только прямое солнечное излучение, что приводит к плохим показателям в туманную или облачную погоду. Зеркальная поверхность фокусирует солнечный свет, отраженный с большой поверхности, на меньшую поверхность абсорбера, благодаря чему достигается высокая температура. В некоторых моделях солнечное излучение концентрируется в фокусной точке, тогда как в других лучи солнца концентрируются вдоль тонкой фокальной линии. Приемник расположен в фокусной точке или вдоль фокальной линии. Жидкость-теплоноситель проходит через приемник и поглощает тепло. Такие коллекторы-концентраторы наиболее пригодны для регионов с высокой инсоляцией - близко к экватору и в пустынных районах. Существуют и другие недорогие технологически несложные солнечные коллекторы узкого назначения - солнечные печи для приготовления еды и солнечные дистилляторы, которые позволяют дешево получить дистиллированную воду практически из любого источника. Солнечные печи Они дешевы и просты в изготовлении.

Они состоят из просторной хорошо теплоизолированной коробки, выстеленной отражающим свет материалом например, фольгой , накрытой стеклом и оборудованной внешним отражателем. Кастрюля черного цвета служит поглотителем, нагреваясь быстрее, чем обычная посуда из алюминия или нержавеющей стали. Солнечные печи можно использовать для обеззараживания воды, если доводить ее до кипения. Бывают ящичные и зеркальные с отражателем солнечные печи. Солнечные дистилляторы Солнечные дистилляторы обеспечивают дешевую дистиллированную воду, причем источником может служить даже соленая или сильно загрязненная вода. В их основе лежит принцип испарения воды из открытого контейнера. Солнечный дистиллятор использует энергию Солнца для ускорения этого процесса. Состоит он из теплоизолированного контейнера темного цвета с остеклением, которое наклонено с таким расчетом, чтобы конденсирующаяся пресная вода стекала в специальную емкость. Небольшой солнечный дистиллятор - размером с кухонную плиту - в солнечный день может вырабатывать до десяти литров дистиллированной воды. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя.

Больше получить невозможно, разве что с помощью сезонного регулирования. Нагрев воды с помощью энергии Солнца - очень практичный и экономный способ. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива. Термосифонные солнечные системы Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией конвекцией теплоносителя, которые используются в условиях теплой зимы при отсутствии морозов. В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Когда вода в коллекторе обычно в плоском нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы. Такие установки популярны в субтропических и тропических областях. Солнечные системы подогрева воды Чаще всего используются для обогрева бассейнов.

Несмотря на то, что стоимость такой установки меняется в зависимости от размера бассейна и других специфических условий, если солнечные системы устанавливаются с целью снижения или отказа от потребления топлива или электроэнергии, они за два-четыре года окупаются за счет экономии энергии. Более того, обогрев бассейна позволяет на несколько недель продлить купальный сезон без дополнительных затрат. В большинстве зданий не составляет труда устроить солнечный обогреватель для бассейна. Он может сводиться к простому черному шлангу, по которому в бассейн подается вода. Для открытых бассейнов нужно всего лишь установить абсорбер. Закрытые бассейны требуют установки стандартных коллекторов, чтобы обеспечить теплую воду и зимой. Сезонное аккумулирование тепла Есть и такие установки, которые позволяют зимой использовать тепло, накопленное летом солнечными коллекторами и сохраненное при помощи больших аккумулирующих баков сезонное аккумулирование. Здесь проблема заключается в том, что количество жидкости, необходимое для обогрева дома, сопоставимо с объемом самого дома. Вдобавок, хранилище тепла необходимо очень хорошо изолировать. Чтобы обычный домашний бак-накопитель сохранил большую часть тепла в течение полугода, его пришлось бы обернуть в слой изоляции толщиной 4 метра.

Поэтому выгодно делать объем накопительной емкости очень большим. Из-за этого снижается отношение площади поверхности к объему. Солнечные модули устанавливают прямо на земле. Существует также возможность комбинирования районного отопления с индивидуальными солнечными коллекторами. Районную систему отопления можно отключить на лето, когда горячее водоснабжение обеспечивается Солнцем, и нет потребности в отоплении. Солнечная энергия в сочетании с другими возобновляемыми источниками. Хороший результат приносит комбинирование различных возобновляемых источников энергии, например, тепло Солнца в сочетании с сезонным аккумулированием тепла в виде биомассы. Либо, если оставшаяся потребность в энергии очень низка, можно использовать жидкие или газообразные виды биотоплива в сочетании с эффективными котлами в дополнение к солнечному отоплению. Интересную комбинацию представляют собой солнечное отопление и котлы, работающие на твердой биомассе. Этим же решается и проблема сезонного хранения солнечной энергии.

Использование биомассы летом не является оптимальным решением, так как КПД котлов при частичной загрузке невысок, к тому же относительно высоки потери в трубах - а в небольших системах сжигание древесины летом может причинять неудобство. Зимой, когда количество солнечной энергии незначительно, практически все тепло вырабатывается за счет сжигания биомассы. В Центральной Европе накоплен большой опыт комбинирования солнечного отопления и сжигания биомассы для производства тепла. Это сочетание может применяться и в индивидуальных жилых домах, и в системах центрального районного отопления. В условиях Центральной Европы около 10 м3 биомассы например, дров достаточно для отопления частного дома, причем солнечная установка помогает сэкономить до 3 м3 дров в год. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. Девять электростанций, расположенных в пустыне Мохаве в американском штате Калифорния имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США.

В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды GEF. По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы зеркала и солнечные пруды. Солнечные концентраторы Такие электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду. Большие зеркала - с точечным либо линейным фокусом - концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма «Luz Corp. Они производят 354 МВт электроэнергии.

Сейчас солнечная энергетика — не далекая мечта, а каждодневная реальность, занимающая все больше места в деятельности научных институтов и промышленных организаций. Солнечная энергия неисчерпаема — при бесконечном росте наших технических возможностей. Цель работы — рассмотреть достоинства и недостатки солнечной энергетики и предложить перспективы ее развития в дальнейшем. Глава 1.

Неподвижные фотоэлектрические батареи получают в течение года наибольшее количество солнечной радиации, когда угол наклона относительно уровня горизонта равняется географической широте, на которой расположено здание. Угол наклона крыши здания и его ориентация на юг являются важными аспектами при разработке проекта здания. Солнечные коллекторы для горячего водоснабжения и фотоэлектрические батареи должны быть расположены в непосредственной близости от места потребления энергии. Важно помнить, что близкое расположение ванной комнаты и кухни позволяет сэкономить на установке активных солнечных систем в этом случае можно использовать один солнечный коллектор на два помещения и минимизировать потери энергии на транспортировку. Главным критерием при выборе оборудования является его эффективность. Заключение В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем. В настоящее время разрабатываются новые космические проекты, имеющие целью исследование Солнца, проводятся наблюдения, в которых принимают участие десятки стран. Данные о процессах, происходящих на Солнце, получают с помощью аппаратуры, установленной на искусственных спутниках Земли и космических ракетах, на горных вершина и в глубинах океанов. Большое внимание нужно уделить и тому, что производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепла и электроэнергии и т. Сейчас учёные исследуют природу Солнца, выясняют его влияние на Землю, работают над проблемой применения практически неиссякаемой солнечной энергии. Список использованных источников 1. Поиски жизни в Солнечной системе: Перевод с английского. Жуков Г. Общая теория энергии. Дементьев Б. Ядерные энергетические реакторы. Тепловые и атомные электрические станции. Энциклопедический словарь юного астронома, М. Видяпин В. Общая теория. Дагаев М. Тимошкин С. Солнечная энергетика и солнечные батареи. Илларионов А. Природа энергетики. На данный момент активно проводится добыча угля и нефти, запасы которых с каждым днем становятся все меньше. Не менее остро стоит вопрос экологический - активная добыча ресурсов и их дальнейшее использование пагубно сказывается на состоянии планеты, изменяя не только природу почв, но даже климатические условия. Именно поэтому особенное внимание всегда уделялось естественным источникам энергии, таким, к примеру, как вода или ветер. Наконец, спустя столько лет активных исследований и разработок человечество «доросло» до использования энергии Солнца на Земле. Именно о нем и пойдет далее речь. Что в этом привлекательного Прежде чем переходить к конкретным примерам, выясним, чем же так сильно заинтересовал этот вид добычи энергии исследователей всего мира. Основным его достоянием можно назвать неисчерпаемость. Несмотря на многочисленные гипотезы, вероятность того, что звезда вроде Солнца погаснет в ближайшее время, крайне мала. Значит, перед человечеством открыта возможность получать чистую энергию совершенно естественным путем. Второе несомненное преимущество использования энергии Солнца на Земле заключается в экологичности этого варианта. Воздействие на окружающую среду при таких условиях будет нулевым, что в свою очередь обеспечивает всему миру куда более светлое будущее, нежели то, которое открывается при постоянной добыче ограниченных подземных ресурсов. Наконец, следует уделить отдельное внимание тому факту, что Солнца представляет наименьшую опасность для самого человека. Как на самом деле Теперь перейдем к сути. Под несколько поэтичным названием «солнечная энергия» скрывается на самом деле преобразование радиации в электричество при помощи специально разработанных технологий. Данный процесс обеспечивают фотоэлектрические элементы, которые человечество чрезвычайно активно использует в своих целях, причем достаточно успешно. Солнечная радиация Так уж сложилось исторически, что существительное «радиация» вызывает у человека скорее негативные ассоциации, нежели позитивные в связи с теми техногенными катастрофами, которые миру удалось пережить на своем веку. Тем не менее технология использования энергии Солнца на Земле предусматривает работу именно с ней. По сути, данный вид радиации представляет собой электромагнитное излучение, диапазон которого находится в промежутке от 2,8 до 3,0 мкм. Количество солнечной энергии, попадающей на Землю Теперь, когда состав используемого на благо человечества спектра определен, следует отметить еще одну важную особенность данного ресурса. Использование солнечной энергии на Земле кажется весьма перспективным еще и потому, что она доступна в довольно большом количестве при практически минимальных затратах на переработку. Для сравнения отметим, что всего один киловатт-час сможет обеспечить десятилетнюю работу лампочки мощностью в сто ватт. Мощность излучения Солнца и использование энергии на Земле, конечно, зависит от целого ряда факторов: климатических условий, угла падения лучей на поверхность, времени года и географического положения. Когда и сколько Несложно догадаться, что суточное количество солнечной энергии, попадающей на поверхность Земли, постоянно меняется, поскольку напрямую зависит от положения планеты по отношению к Солнцу и движения самого светила. Давно известен тот факт, что в полдень излучение максимально, в то время как утром и вечером количество достигающих поверхности лучей значительно меньше. С уверенностью можно говорить о том, что использование энергии Солнца будет наиболее продуктивно в регионах, максимально приближенных к экваториальной полосе, поскольку именно там разница между высшими и низшими показателями минимальна, что говорит о максимальном количестве радиации, достигающей поверхности планеты. К примеру, на территории пустынных африканских участков годовое количество излучения достигает в среднем 2200 киловатт-часов, в то время как на территории Канады или, к примеру, Центральной Европы показатели не превышают 1000 киловатт-часов. Солнечная энергетика в истории Если мыслить максимально широко, попытки «приручить» великое светило, согревающее нашу планету, начались еще в глубокой древности во времена язычества, когда каждая стихия была воплощена отдельным божеством. Однако, конечно, тогда об использовании солнечной энергии даже речи быть не могло - в мире царила магия. Настоящий прорыв в науке был совершен в 1839 году Александром Эдмоном Беккерелем, которому удалось стать первооткрывателем фотогальванического эффекта. Изучение данной темы значительно усилилось, и уже через 44 года Чарльз Фриттс смог сконструировать первый в истории модуль, в основе которого был позолоченный селен. Тем не менее для всего человечества это стало настоящим прорывом, открывшим новые горизонты науки, о которых ранее не приходилось даже мечтать. Весомый вклад в развитие солнечной энергетики внес в свое время сам Альберт Эйнштейн. В современном мире имя ученого чаще связывают с его знаменитой теорией относительности, однако на самом деле Нобелевской премии он был удостоен именно за изучение До наших дней технология использования энергии Солнца на Земле переживает то стремительные взлеты, то не менее стремительные падения, однако эта отрасль знаний постоянно пополняется новыми фактами, и можно надеяться, что уже в обозримом будущем перед нами откроется дверь в совершенно новый мир. Природа против нас О достоинствах использования энергии Солнца на Земле мы уже говорили. Теперь обратим внимание на недостатки данного метода, которых, к сожалению, не меньше. Из-за прямой зависимости от географического положения, климатических условий и движения Солнца выработка солнечной энергии в достаточном количестве требует огромных территориальных затрат. Суть заключается в том, что чем больше будет площадь потребления и переработки солнечной радиации, тем большее количество экологически чистой энергии мы получим на выходе. Размещение же таких огромных систем требует большого количества свободной площади, что вызывает определенные затруднения. Еще одна проблема, касающаяся использования энергии Солнца на Земле, заключается в прямой зависимости от времени суток, поскольку выработка ночью будет нулевой, а в утреннее и вечернее время крайне незначительной. Дополнительным фактором риска является сама погода - резкие смены условий могут крайне негативно сказаться на работе такого рода системы, поскольку вызывают затруднения в отладке необходимой мощности. В некотором смысле ситуации с резкой сменой количества поглощения и выработки могут быть опасными. Чисто, но дорого Использование солнечной энергии на Земле затруднительно на данный момент из-за ее дороговизны. Фотоэлементы, необходимые для осуществления основных процессов, имеют достаточно высокую стоимость. Конечно, положительные стороны использования такого рода ресурса делают его окупаемым, однако с экономической точки зрения на данный момент не приходится говорить о полной окупаемости денежных затрат. Тем не менее, как показывает тенденция, цена на фотоэлементы постепенно падает, так что со временем данная проблема может быть полностью решена. Неудобство процесса Использование Солнца как источника энергии представляет затруднение еще и потому, что данный способ обработки ресурсов довольно трудоемок и неудобен. Потребление и переработка радиации напрямую зависят от чистоты пластин, которую обеспечить довольно проблематично. Кроме того, крайне негативно на процессе сказывается и нагревание элементов, которое можно предотвратить только использованием мощнейших систем охлаждения, что требует дополнительных материальных затрат, причем немалых. Кроме того, пластины, используемые в гелиоколлекторах, после 30 лет активной работы постепенно приходят в негодность, а о стоимости фотоэлементов говорилось ранее. Экологический вопрос Ранее говорилось, что использование такого рода ресурса сможет избавить человечество от достаточно серьезных проблем с окружающей средой в будущем. Источник ресурсов и конечный продукт действительно экологически максимально чисты. Тем не менее использование энергии Солнца, принцип работы гелиоколлекторов заключается в применении специальных пластин с фотоэлементами, для изготовления которых требуется масса ядовитых веществ: свинца, мышьяка или калия. Само их использование вреда окружающей среде не приносит, однако, учитывая ограниченный срок их эксплуатации, со временем утилизация пластин может стать серьезной проблемой. Для ограничения негативного воздействия на экологию производители постепенно переходят на тонкопленочные пластины, которые имеют более низкую стоимость и менее пагубно сказываются на окружающей среде. Способы преобразования радиации в энергию Фильмы и книги о будущем человечества дают нам почти всегда примерно одинаковую картину данного процесса, которая, по сути, может существенно отличаться от действительности. Существует несколько способов преобразования.

Последующее остывание теплого воздуха приводит к образованию облаков, дождям и ветрам. Основные преимущества Основные преимущества в сравнении с традиционными источниками: Неисчерпаемость. Речь о возобновлении не идет, поскольку Солнце будет светить еще несколько миллиардов лет. Отсутствие какого-либо загрязнения окружающей среды. По сути, энергии Солнца обязана наша планета со всем ее многообразием живых существ. Сокращение вредных выбросов и замедление процесса глобального потепления, который во многих регионах уже ощущается непосредственно в виде погодных аномалий и подъема уровня океана. Возможность развития регионов, которые находятся на больших расстояниях от индустриально развитых центров. В таких местах может не быть собственных полезных ископаемых, а их привоз является экономически нецелесообразным. Как правило, многие из этих регионов планеты являются островными государствами, которые расположены вдали от континентов. Простота использования и преобразования. Поскольку в настоящее время развивается активно направление преобразования энергии солнца в электрическую, то последнюю можно использовать для широкого спектра нужд. Современное состояние развития устройств для преобразования солнечной энергии позволяет создавать как крупные сети для мегаполисов, так и изолированные станции, обеспечивающие потребности относительно небольших поселений вплоть до отдельных домов. Способы использования Два основных способа применения солнечного электромагнитного излучения: пассивный; активный. Пассивный метод К пассивному относится использование солнечного света в быту непосредственно, то есть без его преобразования в другие виды энергии с помощью каких-либо устройств и механизмов. Этот способ включает различные системы проектирования зданий и сооружений, водохранилищ и солнечных кухонь, которые позволяют определенным образом перераспределять энергию падающих лучей и улучшать естественную вентиляцию помещений или поглощать тепло в дневное время суток и отдавать его в ночные часы. Такая архитектура получила название биоклиматической.

Солнечная энергия — будущее Земли

Это позволяет значительно сократить стоимость оборудования, и произведенной на нем энергии. Способы получения электричества и тепла из солнечного излучения 1 Получение электроэнергии с помощью фотоэлементов 2 Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла. Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду. Типы фотоэлектрических элементов 2 Поликристаллические кремниевые; 3 Тонкопленочные. Сырье, из которого делают солнечные батареи - кремний — второй по распространенности элемент на нашей планете. На кремний приходится более четверти общей массы земной коры.

В большинстве случаев это вещество встречается в виде окиси — SiО2, а вот добыть чистый кремний из этого соединения сложно, даже проблематично. К примеру, можно использовать вместо кремния синтетические волокна, способные под воздействием света генерировать электрический ток. Технологии солнечной энергетики Более чем за полвека ученые перепробовали огромное количество различных вариантов и способов добычи и использования солнечной энергии. Дорогие и малоэффективные технологии уступали место привлекательным и дешевым разработкам, которые не прекращают совершенствоваться на протяжении многих лет. Классификация «солнечных» технологий, разделенных учеными на 4 группы: 1 Активные — вместе с преобразователями задействуются механизмы, электромоторы, помпы.

Солнечная энергия используется для нагрева воды, освещения, вентиляции. Особенностью построения для организации систем вентиляции, отопления является подбор строительных материалов, планировка помещения, размещение окон. Сферы деятельности человека, где энергия солнца получила наибольшее распространение: 1 Системы естественного освещения — один из методов применения пассивных технологий солнечной энергетики для обустройства офисов и жилых помещений. Суть этого метода заключается в использовании солнечного света в качестве альтернативы электрическим лампам и светильникам.

Обычно под термином «солнечная батарея» подразумевается несколько объединённых фотоэлектрических преобразователей фотоэлементов — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток. Фотоэлемент, электронный прибор, в котором в результате поглощения энергии падающего на него оптического излучения генерируется эдс электродвижущая сила фотоэдс или электрический ток фототок. В это время медь начнет окисляться, поэтому черный слой разрушиться. Соединим провода.

В «солнечном доме», обеспечивающем себя не только теплом, но и электроэнергией, используется другой тип гелиоустановки. В этом случае лучшим рабочим телом являются жидкости типа фреона с малой теплотой испарения, но из-за опасного загрязнения в случае утечки влияние на озоновый слой атмосферы их промышленное производство сейчас запрещено. Все чаще применяются в солнечных установках фотоэлектрические преобразователи на основе кристаллов кремния и арсенида галлия. Применение гетероструктурных полупроводников, за открытие и внедрение которых академик Ж. Алферов получил недавно Нобелевскую премию, увеличивает эффективность преобразователей вдвое. Панели солнечных преобразователей, располагаемых, как правило, в верхней части здания, заменяют тепловой коллектор, и вырабатывают ток, идущий на освещение, обогрев и механические работы. Его эффективность и распространение в значительной степени зависят от такой простой истины, как экономное отношение к получаемой энергии. Он должен иметь надежную теплоизоляцию, современную вентиляционную технику, кондиционеры, то есть не должен выбрасывать тепло «на ветер». Как показывает опыт, только за счет экономии тепла расходы электроэнергии сокращаются в несколько раз. Границы малой солнечной энергетики постоянно расширяются, и теперь она способна обеспечивать энергией не только отдельные дома, но и целые заводы. Это гелиостанции башенного типа с котлом, поднятым высоко над землей, и большим числом параболических или плоских зеркал гелиостатов , расположенных у подножия. Зеркала должны быть подвижными, отслеживать дневное перемещение Солнца с помощью механической системы, управляемой компьютером, что усложняет установку и очень сказывается на стоимости производимой энергии. Вырабатываемый котлом пар приводит в действие электрогенератор, как на тепловых станциях. Такие солнечные электростанции мощностью 0,1—10 МВт были построены во многих странах с «хорошим» солнцем США, Франция, Италия, Япония и сейчас успешно работают. Главное препятствие их широкому распространению — высокая себестоимость электроэнергии, в 6—8 раз выше, чем на ТЭС. Хотя имеется тенденция к снижению за счет более простых гелиостатов, более эффективных полупроводников, легких ленточных панелей , пока наземные СЭС не могут экономически конкурировать с ТЭС. Другое дело — соображения экологического порядка. Молодые солнечные станции намного «чище» тепловых и свою нишу в энергетике они, несомненно, найдут. Прогресс науки и улучшение международного климата, когда СЭС, расположенная в пустынной местности, будет снабжать энергией сразу несколько стран, будут способствовать их внедрению. Столь мощные СЭС были бы чрезвычайно громоздки, для их постройки нужно отчуждать огромные территории в пустынных местах и передавать электроэнергию на большие расстояния. При этом пропадает экологическая «чистота» и не устраняется тепловой нагрев Земли что считалось изначально главными достоинствами солнечной энергетики. Чтобы предназначенное было полностью выполнено, надо выносить СЭС в космическое пространство. Глава 3. Глезер в 1968 г. Она включала три необходимых элемента, которые не изменились за прошедшие 30 лет: размещение на искусственном спутнике солнечных батарей, преобразующих радиацию в электрический ток; выбор экваториальной геостационарной орбиты, обеспечивающей в течение всего года постоянную освещенность панелей и «зависание» станции над определенным местом Земли; преобразование тока в СВЧ-излучение и передача его направленным пуком на наземную приемную антенну. Принципиальная схема СКЭС Достоинства СКЭС очевидны: увеличение плотности потока солнечной радиации, рассеивание фонового тепла в космос исключается опасность теплового перегрева Земли , отсутствие контакта с земной природой. Сразу видны и большие трудности. Кроме чисто технической задачи, связанной с КПД фотоприемников и необходимостью развертывания в космосе многокилометровых солнечных панелей, осталась неясной проблема сжатия пучка излучения, который на расстоянии 36 тыс. Несмотря на заманчивость и кажущуюся простоту идеи, столь серьезные трудности не могли быть быстро преодолены, и реализация «истинно солнечной энергетики» перенесена в XXI в. Известно несколько типов преобразователей солнечной радиации машинные — с газовыми и паровыми турбинами , прямые без стадии механической работы — на основе различных термо- и фотоэлементов , но сейчас, по-видимому, можно отдать твердый приоритет солнечным полупроводниковым батареям, давно и с успехом работающим в космосе. Это кремниевые полупроводники с добавками алюминия и лития, в которых происходит прямое преобразование солнечной радиации в электрический ток. Глава 4. В последние годы термин «энергетический кризис» все чаще стал появляться в печати и обыденной речи.

Различают два типа солнечных коллекторов: 1. В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих — с концентрацией, то есть с увеличением плотности поступающего потока радиации. Концентраторы солнечной энергии. Концентраторы — это оптические устройства в виде зеркал или линз, в которых достигается повышение плотности потока солнечной энергии. Зеркала плоские, параболоидные или параболоцилиндрические изготавливаются из тонкого металлического листа или фольги или др. Материалов с высокой отражательной способностью. Сравнительная характеристика коллекторов различных типов Солнечные станции строятся в основном двух типов: 1 — СЭС башенного типа, 2 — СЭС модульного типа. Система, состоящая из множества небольших концентрирующих коллекторов, каждый из которых независимо следит за солнцем — модульная СЭС. Концентраторы не обязательно должны иметь форму параболоида, не обычно это предпочтительно. Каждый концентратор передает солнечную энергию жидкости теплоносителя. Горячая жидкость ото всех коллекторов собирается в центральной энергостанции. Тепло несущая жидкость может быть водяным паром, если она будет прямо использоваться в паровой турбине или какой-нибудь термохимической средой — например, диссоциированный аммиак. Основные недостатки систем с сосредоточенными коллекторами: 1 — для каждого отражателя требуется сложный по конструкции термический приемник, который размещается в его фокальной области. Указанные выше трудности разрешаются, если вместо этих 10-20 тысяч приемников сделать один аналогичный по своим размерам и параметрам паровому котлу обычного типа, и поднять его над поверхностью Земли. Таким образом, возникает концепция гелиостанции башенного типа. В этом случае все параболоиды заменяются практически плоскими отражателями, производство которых значительно дешевле. Достаточно большой водоем может быть просто вырыт могут быть использованы и природные водоемы, например, в Израиле использовано Мертвое море в качестве солнечного пруда , что относительно недорого. Солнечный пруды содержат в себе и накопители тепла, поэтому область их использования может быть довольно широкой. Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах кондиционирования воздуха абсорбционного типа, для производства электроэнергии, т. В солнечный пруд заливается несколько слоев воды с различной степенью солености, причем наиболее соленый слой 0,5 м располагается на дне. Солнечное излучение поглощается окрашенными в темный цвет дном водоема и придонный слой воды нагревается. Придонный слой воды берется настолько более соленым, чем слой над ним, что плотность его хотя и уменьшается при нагревании, но все-таки остается выше плотности более высокого слоя. Пруд глубиной до 2-х м способен обеспечить непрерывную работу СЭС при прекращении инсоляции на срок до недели, пруды большей глубины могут обеспечить сезонный цикл аккумуляции. Правда, для этих СЭС требуются большие площади земельных угодий, в остальном — экологически приемлемые сооружения, тем более, что соленые пруды в естественных условиях существуют веками. Глава 2. Не подводятся провода извне, нет счетчиков электроэнергии и теплой воды, не нужны запасы дров, угля, мазута. Никаких отключений и перебоев из-за прихотей Минтопэнерго — сам себе Чубайс, сам себе Черномырдин. Только все это пока, к сожалению, не у нас, а в США, Японии, Западной Европе, хотя климатические условия позволяют иметь это удобство во многих наших регионах. В чем дело, не очень понятно: то ли стоит дорого, то ли мода не дошла. Используются разные способы преобразования солнечной энергии: фототермический, фотоэлектрический и фотохимический. В первом, простейшем, рабочее тело теплоноситель нагревается в коллекторе системе светопоглощающих труб до высокой температуры и служит для отопления помещений. Коллектор располагается на крыше здания так, чтобы его освещенность в течение дня была наибольшей. Система отражающих жалюзи, управляемая компьютером, обеспечивает нужную освещенность коллектора для заданного интервала температур в помещениях.

Будущее солнечной энергии

И если бы человек смог взять у Солнца хотя бы один процент поступающей от него энергии, то энергетическая проблема не вставала бы перед человечеством еще многие столетия. Уже более полувека Солнце обеспечивает энергией космические аппараты на орбите. Экологически чистая и неиссякаемая энергия Солнца — это будущее и земной энергетики Исходя из этого, у нас возникло желание познакомиться с принципом работы солнечных электростанций и устройством солнечных батарей. Атомные электростанции АЭС использует энергию, выделяющуюся при ядерной реакции. Атомные электростанции являются более «чистым» способом производства электроэнергии. Они производят большое количество энергии, потребляя при этом малое количество топлива. Топливом им служат радиоактивные элементы, такие как уран и плутоний. АЭС таит в себе разрушительный потенциал; крупная авария может вывести из хозяйственного использования тысячи километров земли, а также проблема с утилизацией отходов.

Гидроэлектростанции ГЭС используют энергию рек, энергию падающей воды. Огромные площади земель затопляются, вода в водохранилищах загрязняется, так как накопляются отходы. ГЭС наносит непоправимый вред популяциям рыб. Сегодня доля в мировом производстве электроэнергии составляет около 20 3. Теплоэлектростанции ТЭС электростанции превращают химическую энергию топлива в тепловую, а затем механическую и в электрическую. Эти станции дают много отходов, а топливо для них дорогое. И, прежде всего, химическое загрязнение, связанное со значительными выбросами в атмосферу таких загрязнителей, как оксиды азота, углерода, диоксид серы, зола II.

Солнечные электростанции. Солнечные электростанции работают на возобновляемом ресурсе, они заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. По легенде, великий греческий ученый Архимед с помощью системы зажигательных зеркал сжег неприятельский флот, осадивший его родной город Сиракузы. Впервые на взаимосвязь солнечного света и электричества обратил внимание Александр-Эдмон Беккерель. Он открыл явление фотоэффекта, представляющее собой излучение электронов под воздействием солнечного света в 1839 году. В 30-х годах физик А.

В 1957 году в СССР был запущен первый искусственный спутник с применением фотогальванических элементов, а в 1958 г.

Технически концентрацию солнечного излучения можно осуществить с помощью различных оптических элементов - зеркал, линз, световодов и др. Основным энергетическим показателем концентратора солнечного излучения является коэффициент концентрации, который определяется как отношение средней плотности сконцентрированного излучения к плотности лучевого потока, который падает на отражающую поверхность при условии точной ориентации на Солнце. Национальная безопасность любого государства связана с его устойчивым развитием, основой которого является надежное энергообеспечение.

Поэтому ученые всего мира работают над разными энергопроектами, изучают возможные энергетические источники, основываясь на их сравнении с нефтью, природным газом и углем, то есть с невозобновляемыми ресурсами. Доля же возобновляемых источников Солнца, ветра, воды пока незначительна. Тогда нефти хватит до 2007г. Поиски экологически чистых возобновляемых локальных источников энергии, а также новых способов ее передачи не менее актуальны.

Известен важный с этой точки зрения аргумент в пользу солнечной энергетики - катастрофически увеличивающийся парниковый эффект. Международное сообщество пришло к единому мнению: главный виновник парникового эффекта - увеличение содержания углекислого газа в атмосфере, что является следствием сжигания углеродного топлива. Наиболее экономичная возможность использования солнечной энергии - направлять ее на получение вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы.

Много бедствий в районах газоносных месторождений связано с выбросами сероводорода или продуктов его переработки в атмосферу. Сероводород считается вредной примесью. Сейчас в промышленности сероводород окисляют кислородом воздуха по методу Клауса и получают при этом серу, а водород связывается с кислородом. Для очистки попутного нефтяного газа от сероводорода нами были исследованы свойства алюмосиликатов.

Изучено влияние солнечного излучения на пористость и адсорбционные свойства сорбентов. Адсорбент облучали на опытной гелиоустановке с различной длительностью. Использование любого вида энергии и производство электроэнергии сопровождаются образованием многих загрязнителей воды и воздуха. И если верно, что любой вид человеческой деятельности неизбежно оказывает вредное воздействие на природу, то степень этого вреда различна.

Мы не можем не влиять на среду, в которой живем, поскольку для поддержания жизненных процессов необходимо поглощать и использовать энергию. Перспективы солнечной энергетики. Использования солнечной энергии может быть полезно в нескольких отношениях. Во-первых, при замене ею ископаемого топлива уменьшается загрязнение воздуха и воды.

Во-вторых, замена ископаемого топлива означает сокращение импорта топлива, особенно нефти. В-третьих, заменяя атомное топливо, мы снижаем угрозу распространения атомного оружия. Наконец, солнечные источники могут обеспечить нам некоторую защиту, уменьшая нашу зависимость от бесперебойного снабжения топливам. Несомненно, некоторый ущерб окружающей среде может наноситься также добычей руды, изготовлением аккумуляторных батарей и гораздо большим количеством проводов и линий передачи, необходимых для сбора электроэнергии от многочисленных ее источников.

Но в целом, если учесть все затраты на охрану среды, они окажутся очень малыми. Обзор различных альтернативных источников энергии показывает, что на пороге широкомасштабного промышленного внедрения находятся ветротурбины и солнечные батареи. Если добавить к этому энергосбережение, есть надежда решить встающие энергетические проблемы, таким образом, строительство новых атомных и тепловых электростанций вовсе не обязательно. Что же касается отдаленного будущего, то в первую очередь следует разрабатывать системы запасания энергии, вырабатываемой солнечными и ветровыми станциями.

С точки зрения окружающей среды и устойчивого развития эти альтернативные источники электричества вполне надежны. За альтернативными источниками энергии стоит наше будущее. Необходимо объединить усилия для борьбы за чистую планету, чистый воздух, чистую воду! Здесь построено примерно 2600 гелиоустановок на кремниевых фото-преобразователях мощностью от 1 до 1000 кВт и солнечных коллекторных устройств для получения тепловой энергии.

Программа, получившая наименование «Солар-91» и осуществляемая под лозунгом «За энергонезависимую Швейцарию! Программа «Солар-91» осуществляется практически без поддержки государственного бюджета, в основном, за счет добровольных усилий и средств отдельных граждан, предпринимателей и муниципалитетов. К 2000-му году она предусматривает довести количество гелиоустановок до 3000. Гелиоустановку на кремниевых фотопреобразователях, чаще всего мощностью 2-3 кВт, монтируют на крышах и фасадах зданий.

Она занимает примерно 20-30 квадратных метров. Дневной избыток энергии в летнюю пору направляют в электрическую сеть общего пользования. Зимой же, особенно в ночные часы, энергия может быть бесплатно возвращена владельцу гелиоустановки. Крупные фирмы монтируют на крышах производственных корпусов гелиостанций мощностью до 300 кВт.

В районах альпийского высокогорья, где нерентабельно прокладывать линии электропередач, строятся автономные гелиоустановки с аккумуляторами. Опыт эксплуатации свидетельствует, что Солнце уже в состоянии обеспечить энергопотребности, по меньшей мере, всех жилых зданий в стране. Гелиоустановки, располагаясь на крышах и стенах зданий, на шумозащитных ограждениях автодорог, на транспортных и промышленных сооружениях не требуют для размещения дорогостоящей сельскохозяйственной или городской территории. Автономная солнечная установка у поселка Гримзель дает электроэнергию для круглосуточного освещения автодорожного тоннеля.

Вблизи города Шур солнечные панели, смонтированные на 700-метровом участке шумозащитного ограждения, ежегодно дают 100 кВт электроэнергии. Солнечные панели мощностью 320 кВт, установленные по заказу фирмы Biral на крыше ее производственного корпуса в Мюнзингене, почти полностью покрывают технологические потребности предприятия в тепле и электроэнергии. Современная концепция использования солнечной энергии наиболее полно выражена при строительстве корпусов завода оконного стекла в Арисдорфе, где солнечным панелям общей мощностью 50 кВт еще при проектировании была отведена дополнительная роль элементов перекрытия и оформления фасада. КПД кремниевых фотопреобразователей при сильном нагреве заметно снижается и, поэтому, под солнечными панелями проложены вентиляционные трубопроводы для прокачки наружного воздуха.

Нагретый воздух работает как теплоноситель коллекторных устройств. Темно-синие, искрящиеся на солнце фотопреобразователи на южном и западном фасадах административного корпуса, отдавая в сеть 9 кВт электроэнергии, выполняют роль декоративной облицовки. Helios - солнце] - первая составная часть сложных слов, означающая: относящийся к солнцу или солнечным лучам развивается быстрыми темпами в самых разных направлениях. Солнечными батареями в просторечии называют и электрические и нагревательные устройства.

Следует подчеркнуть разницу между элементами. Различают три основных преобразователя солнечной энергии в электрическую: 1. Фотоэлектрические преобразователи- ФЭП- полу-проводниковые устройства, прямо преобразующие солнечную энергию в электричество. Гелиоэлектростанции ГЕЭС - солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др.

Многие бытовые нужды решаются с помощью солнечных коллекторов и батарей. Солнечные установки имеют больше преимуществ, чем недостатков. В первую очередь их использование безопасно и бесконечно, они полностью автономны, долговечны и стабильны. Конечно, стоят они не дешево, но их цена со временем окупится, и будет только радовать. С каждым годом человечество придумывает все новые, и новые способы использовать солнечную энергию. Если не так давно ее использовали только для обогрева дома, то теперь вырабатывают электричество, для подачи не только света, но и воды в большие населенные пункты. Создаются и усовершенствуются гелиосистемы, с помощью которых в районах, чаще всего это пустыни и степи, где солнце светит постоянно, можно установить электростанцию и получать электричество. Благодаря этому неприспособленные к жизни места, станут заселенными, построятся дома, появится электричество и водопровод. Энергия будет использоваться на все нужды населения.

Уже сегодня во многих странах установлены и используются солнечные батареи. В странах Азии, Египте и Турции прекрасно пользуются солнечной энергией. Люди надеются, что в скором времени это приобретет большого использования и станет доступно многим людям, ведь это не только экономит затраты на отопление и электроэнергию, это еще и не приносит вред нашему здоровью. Использование энергия солнца на земле Человеку во все времена было свойственно изображать окружающий его мир, свои эмоции и переживания на любых доступных материалах. Сначала, на заре времен, это были стены пещеры, либо гладкий склон скалы, а потом, В этом году исполняется 193 года со дня рождения одного из самых любимых мальчишками романистов, предсказавших в своих фантастических произведениях за долгое их появление таких Крылов Иван Андреевич родился в 1769 году в семье бедного армейского офицера. Отец будущего баснописца участвовал в подавлении крестьянского восстания под руководством Емельяна Пугачёва. Солнце — светящийся газовый шар крупных размеров с постоянным излучением энергии. Благодаря Солнцу на Земле процветает жизнь. За счет Солнца происходит циркуляция воздуха и воды на планете, оно регулирует воздушную и водную среду.

Солнечная энергия является экологически чистым ресурсом. Солнечная энергия очень доступна и имеет высокий потенциал в использовании. Энергия рассеивается по земле, поэтому для качественного использования нужно сначала собирать её. Весь мир начал искать способы преобразования солнечной энергии, так как круглый год она поступает на планету в огромных количествах. Применение солнечной энергии Основной сферой использования солнечной энергии является системы солнечных батарей. Батареи устанавливают на крышах зданий, в которых энергию используют для отопления и освещения, а также для всевозможных приборов, которые работают от электричества. Энергию солнца батареи или коллекторы накапливают, затем преобразовывают в электричество, которое помогает обслужить электрические приборы. Еще в 1996 году архитекторы разрабатывали проекты зданий с солнечными батареями. Коллекторы устанавливали на крышах домов или на солнечных площадках земли.

Интересные факты Лучи Солнца добираются до Земли всего лишь за 8 минут. В последние года очень популярно устанавливают солнечные батареи, лидерами являются такие страны, как Япония, Германия, Испания. К 2020 году Китайские ученые планируют установить в космосе солнечную электростанцию. Солнечные батареи накапливают энергию и при пасмурной погоде. Существует Ассоциация Солнечной Энергетики, которую создали в Америке в 1955 году, которая и стала началом разработок батарей. Солнце — мощный источник энергии, который в будущем может стать основным источником на поверхности Земли. Для использования солнечной энергии нужно минимум затрат, так как единственными затратами является установка оборудования. Вариант 2 Солнечная энергия на Земле используется в разных видах. На самом Солнце протекают достаточно трудные процессы, которые позволяют выделять энергию, необходимую для жизни на всей планете.

Благодаря этому может нагреваться атмосфера, в которой образовываются ветра, а также течения морские и океанические течения. Солнечная энергия способствует смене времен года, которых бы не было отсутствуй Солнце или если бы сама энергия не выделялась в таких количествах. Также солнце играет ведущую роль в круговороте воды на Земле, а также в появлении природных ископаемых. Таким образом, правильно работает отопление планеты в целом.

В 2018 году ожидается строительство в Казахстане 2 АЭС 1. Курчатов — город в Восточно-Казахстанской области; 2. Улькен — посёлок в Алматинской области на берегу озера Балхаш. Преимущества атомных электростанций АЭС перед тепловыми ТЭЦ и гидроэлектростанциями ГЭС очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ.

Пожалуй, более экологичны, чем АЭС, только электростанции, использующие энергию солнечного излучения или ветра.

Использование энергии солнца на Земле - способы и преимущества

Цель работы – рассмотреть достоинства и недостатки солнечной энергетики и предложить перспективы ее развития в дальнейшем. Глава 1. ПЕРСПЕКТИВЫ РАЗВИТИЯ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ Ежесекундно солнце излучает 88·1024 кал. или 370·1012 ГДж теплоты. Солнечная энергия на Земле используется в разных видах. На самом Солнце протекают достаточно трудные процессы, которые позволяют выделять энергию, необходимую для жизни на всей планете. её можно генерировать там же, где она используется. Проблемой остаётся хранение энергии. Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце – это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра). Спутник в космосе может получать солнечную энергию все 24 часа полную неделю даже 365 дней в году. Если солнечные лучи достигающие спутника преобразовать в ток и передать на Землю перспективы солнечной энергетики возрастут многократно. СОЛНЕЧНАЯ ЭНЕРГИЯ-БУДУЩЕЕ ЗЕМЛИ К 2050 году солнечная энергетика будет обеспечивать 20–25% мировых потребностей в электроэнергии и сократит выбросы углекислоты.

Солнечная энергия

Цель программы: способствовать формированию обучающихся навыков эффективного публичного выступления. 1. Солнце – простой источник энергии, который доступен почти всему населению Земли каждый день, из года в год. Когда все остальные ресурсы кончатся (та же самая нефть, например) – солнце никуда не денется. 2. Солнечная энергия бесплатна. Отсюда можно заключить, что постоянный поток энергии Солнца на Землю постоянен и поступает в избыточном количестве. Растения на Земле потребляют всего лишь 0,5 процента энергии, доходящей до Земли. Цель программы: способствовать формированию обучающихся навыков эффективного публичного выступления.

Сколько энергии от Солнца можно получить

  • Будущее нашей цивилизации - за солнечной энергетикой? | Техника и Интернет | ШколаЖизни.ру
  • Слайды и текст этой презентации
  • Способы использования
  • Солнечная энергетика
  • Возможности и перспективы солнечной энергетики - Электроэнергетика и тепло -
  • Сколько энергии от Солнца можно получить

Проект урока физики по теме «Альтернативные источники энергии»

Солнечная энергетика — это направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Еще одно название данной отрасли – гелиоэнергетика. Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. К активным солнечным системам относятся солнечные коллекторы и фотоэлектрические элементы. основной источник энергии во второй половине 21-го века 2030г.: 6. «Сетевой паритет» В ближайшие 3-5 лет «сетевой паритет» будет достигнут в большинстве стран ЕС По данным. Солнечная же энергия, реально поступающая за три дня на территорию России, превышает энергию всей годовой выработки электроэнергии в нашей стране. Кроме того, солнечная энергетика имеет себе мало равных по экологичности и ресурсной базе.

Солнечная энергетика

Наблюдать с Земли можно только внешнюю оболочку Солнца фотосферу. Она-то и излучает солнечную радиацию[5]. Е сли смотреть на Солнце через тёмное стекло, особенно, когда оно находится близко к горизонту , то можно увидеть огромное пятно. Это пятно, является основанием фотосферы. Значительное влияние усиления солнечной активности оказывает на состояние самого человека, например, головокружения, обмороки, скачки давления и т.

Солнечное излучение, падающее на Землю очень стабильно, иначе жизнь на Земле подвергалась бы слишком большим температурным перепадам. В настоящее время спутники очень тщательно измерили энергию, излучаемую Солнцем. Изменения на солнце также влияют на земной климат. Магнитные поля и потоки частиц, которые идут от солнечных пятен, достигают Земли и влияют прежде всего на мозг, сердечно-сосудистую и кровеносную системы человека, на ее физическое, нервное и психологическое состояние.

Высокий уровень солнечной активности, его быстрые изменения возбуждают человека, а поэтому и коллектив, класс, общество. Поворачиваясь к Солнцу то одним, то другим своим полушарием, Земля получает энергию. Весь мир нашей планеты обязан Солнцу своим существованием. Это источник света и тепла.

Фактически ее использует гидро- и ветроэнергетика. Энергия Солнца накапливается в био- топливе: траве, соломе и всем, что растет на поверхности земли. Каковы принципы их работы? Возьмем термодинамические солнечные электростанции: Солнце греет теплоноситель, например воду.

Вода, разогретая до высоких температур, испаряется, пар крутит паровую турбину. Эта турбина подключена к электрогенератору и вырабатывает электричество. Таким образом солнечная энергия преобразуется в тепловую, а потом уже в электрическую. Во многих южных странах используются солнечные коллекторы.

Они позволяют пользоваться солнечной энергией, не перерабатывая ее в электричество. Это могут быть трубки, размещенные на крыше дома и нагревающие воду. Основное направление развития солнечной энергетики — солнечная фотовольтаика, или фотоэлектрический способ преобразования солнечной энергии. Энергия света преобразуется не в тепло, а наиболее прямым образом сразу в электрическую энергию.

Устройство солнечных батарей Как устроены солнечная батарея, солнечный элемент и солнечная панель? Представим пленку или пластинку, на которую падает солнечное излучение.

В быту пик потребления приходится на вечернее время, тогда как пик выработки - на дневное, так что без какого-то аккуумулятора не обойтись. Литиевые аккумуляторы остаются дорогими и небезопасными, к тому же литий как сырьё - вешь дорогая, редкая и тоже исчерпаемая. То есть тут ещё есть над чем работать... Ископаемое топливо, прежде всего нефть, останется ведущим источником энергии для транспорта, потому что электричество плохо приспособлено для того, чтоб таскать его с собой. И если на наземном транспорте это ещё как-то можно решить чему свидетельством рост популярности электромобилей , то для воздушного транспорта это уже не канает.

Ситуация может радикально измениться только с переходом к водородному транспорту.

Различают три основных преобразователя солнечной энергии в электрическую: 1. Фотоэлектрические преобразователи- ФЭП- полу-проводниковые устройства, прямо преобразующие солнечную энергию в электричество. Гелиоэлектростанции ГЕЭС - солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. Солнечные коллекторы СК - солнечные нагревательные низкотемпературные установки. Подробнее разберем каждый из этих преобразователей, обратя внимание на малоиспользуемый вид преобразователей солнечной энергии- химические преобразователи. Фотоэлектрические преобразователи 3.

Виды фотоэлектрических преобразователей Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую так как это прямой, одноступенчатый переход энергии являются полупроводниковые фотоэлектрические преобразователи ФЭП. Теоретические исследования и практические разработки, в области фотоэлектрического преобразования солнечной энергии подтвердили возможность реализации столь высоких значений КПД с ФЭП и определили основные пути достижения этой цели. Преобразование энергии в ФЭП основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения. Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями создание p - n-переходов или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома создание гетеропереходов , или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны создание варизонных структур. Возможны также различные комбинации перечисленных способов. Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость , обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом. Принцип работы ФЭП можно пояснить на примере преобразователей с p-n- переходом, которые широко применяются в современной солнечной и космической энергетике.

Электронно-дырочный переход создаётся путём легирования пластинки монокристаллического полупроводникового материала с определённым типом проводимости то есть или p- или n- типа примесью, обеспечивающей создание поверхностного слоя с проводимостью противоположного типа. Концентрация легирующей примеси в этом слое должна быть значительно выше, чем концентрация примеси в базовом первоначальном монокристалле материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход. Возникший на переходе потенциальный барьер контактная разность потенциалов препятствует прохождению основных носителей заряда, то есть электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Созданные светом в обоих слоях ФЭП неравновесные носители заряда электронно-дырочные пары разделяются на p-n-переходе: неосновные носители т. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда- фотоэлектронов и фотодырок, что как раз и нужно для работы ФЭП.

Если теперь замкнуть внешнюю цепь, то электроны из n-слоя, совершив работу на нагрузке, будут возвращаться в p-слой и там рекомбинировать объединяться с дырками, движущимися внутри ФЭП в противоположном направлении. Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП имеется контактная система. На передней, освещённой поверхности преобразователя контакты выполняются в виде сетки или гребёнки, а на тыльной могут быть сплошными. Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. Так, например, некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплутационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью.

Изготовление солнечных элементов и сборка солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза. В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия GaAs , причём в последнем случае речь идёт о гетерофотопреобразователях ГФП со структурой AlGaAs-GaAs. Вследствие более высокого уровня поглощения солнечного излучения, определяемого прямыми оптическими переходами в GaAs, высокие КПД ФЭП на их основе могут быть получены при значительно меньшей по сравнению с кремнием толщине ФЭП. Это обстоятельство позволяет рассчитывать на создание лёгких плёночных ГФП, для производства которых потребуется сравнительно мало исходного материала, особенно если в качестве подложки удастся использовать не GaAs ,а другой материал, например синтетический сапфир Al2 O3. ГФП обладают также более благоприятными с точки зрения требований к преобразователям СЭС эксплутационными характеристиками по сравнению с кремниевыми ФЭП. Так, в частности, возможность достижения малых начальных значений обратных токов насыщения в p-n-переходах благодаря большой ширине запрещённой зоны позволяет свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и , кроме того, существенно расширять область линейной зависимости последней от плотности светового потока. Благодаря устойчивости к высоким температурам арсенид-галлиевые ФЭП позволяют применять к ним концентраторы солнечного излучения.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется. Существует реальная перспектива снижения стоимости кремниевых ФЭП на один - два порядка при внедрении новых автоматизированных методов производства, позволяющих в частности, получать кремниевые ленты , солнечные элементы большой площади и т. На Западе ожидается переворот в энергетике в момент перехода цены 3-долларового рубежа. По некоторым расчётам, это может произойти уже в 2002 г.

Тут играют роль вместе взятые: тарифы, климат, географические широты, способности государства к реальному ценообразованию и долгосрочным инвестициям. Именно, в основном, кремниевые СБ можно видеть сегодня на крышах домов разных стран мира. В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения. Галлий добывается в основном из бокситов , однако рассматривается также возможность его получения из угольной золы и морской воды. В космических аппаратах, где основным источником тока являются солнечные батареи и где очень важны понятные соотношения массы, размера и КПД, главным материалом для солн. Очень важна для космических СЭС способность этого соединения в ФЭП не терять КПД при нагревании концентрированным в 3-5 раз солнечным излучением, что соответственно, снижает потребности в дефицитном галлии. Стоимость ГФП при их массовом производстве на базе усовершенствованной технологии будет, вероятно, также значительно снижена, и в целом стоимость системы преобразования системы преобразования энергии СЭС на основе ГФП из GaAs может оказаться вполне соизмеримой со стоимостью системы на основе кремния.

Таким образом, в настоящее время трудно до конца отдать явное предпочтение одному из двух рассмотренных полупроводниковых материалов- кремнию или арсениду галлия, и лишь дальнейшее развитие технологии их производства покажет, какой вариант окажется более рационален для наземной и космической солнечных энергетик. Постольку-поскольку СБ выдают постоянный ток, то встаёт задача трансформации его в промышленный переменный 50 Гц ,220 В. С этой задачей отлично справляется специальный класс приборов- инверторы. Расчет фотоэлектрической системы. Использовать энергию солнечных элементов можно также как и энергию других источников питания, с той разницей, что солнечные элементы не боятся короткого замыкания. Каждый из них предназначен для поддержания определенной силы тока при заданном напряжении. Но в отличии от других источников тока характеристики солнечного элемента зависят от количества падающего на его поверхность света.

Кроме того отклонения в технологических режимах влекут за собой разброс выходных параметров элементов одной партии. Следовательно, желание обеспечить максимальную отдачу от фотоэлектрических преобразователей приводит к необходимости сортировки элементов по выходному току. Нечто аналогичное происходит и в цепочке из неоднородных по выходным параметрам солнечных элементов. Кремниевые солнечные элементы являются нелинейными устройствами и их поведение нельзя описать простой формулой типа закона Ома.

Похожие новости:

Оцените статью
Добавить комментарий